
LATTICE-BOLTZMANN
AND COMPUTATIONAL FLUID DYNAMICS



NAVIER-STOKES EQUATIONS

𝜕𝑢

𝜕𝑡
+ 𝑢 ∙ 𝛻𝑢 +

1

𝜌
𝛻𝑝 = Ԧ𝑔 + 𝜈𝛻 ∙ 𝛻𝑢

𝛻 ∙ 𝑢=0



WHAT IS COMPUTATIONAL FLUID 
DYNAMICS?

• Branch of Fluid Dynamics which uses computer 

power to approximate the solutions to equations, 

because many of the equations describing fluids are 

very difficult or even impossible to solve exactly. 

• E.g. Wind tunnels for the aerodynamic design of 

aircrafts and automobiles, or simulation of ocean 

currents

Eddy Currents past a cylinder

Fluid flowing behind a car



LATTICE-BOLTZMANN ALGORITHM
The Discretization of Time and Space of ideal fluids into one neat little 

algorithm



THE LATTICE



LATTICE-BOLTZMANN IN 2D
• The Lattice-Boltzmann algorithm in 2D is the called D2Q9

• All of the flow is directed into 9 vectors

• 0 vector

• Horizontal and Vertical Vectors

• 45° Vectors

• Weights are used to determine the likelihood of the fluid 
to go in the direction of the vector 𝑒0 = 0

𝑒1 = 1, 0 𝑒5 = (1, 1)
𝑒2 = 0, 1 𝑒6 = (−1, 1)

𝑒3 = −1, 0 𝑒7 = (−1,−1)
𝑒4 = 0,−1 𝑒8 = (1,−1)

𝑤0 =
4

9
, 𝑤1= 𝑤2=𝑤3=𝑤4=

1

9
, 𝑤5= 𝑤6=𝑤7=𝑤8=

1

9



MAXWELL-BOLTZMANN 
DISTRIBUTION

• The Maxwell-Boltzmann distribution describes the average distribution of non-
interacting material particles over various energy states in equilibrium.

𝐷 Ԧ𝑣 =
𝑚

2𝜋𝑘𝑇
𝑒−

𝑚 𝑣 2

2𝑘𝑇



DERIVING THE WEIGHTS

• When this equation is integrated over a velocity range and multiplied by a 
directional velocity, it gives the system of equation to solve for the weights 
(the 9 vectors in the star)

• For example:

• This equality only works under the assumption that

න
−∞

∞

න
−∞

∞

𝑣𝑥
2𝐷 Ԧ𝑣 𝑑𝑣𝑥𝑑𝑣𝑦

𝑖=0

8

(𝑒𝑖,𝑥∙ 𝑐)
2𝑤𝑖

𝑐2 =
3𝑘𝑇

𝑚



INITIAL CONDITIONS

• 𝑛0 =
4

9
1 − 1.5𝑣2

• 𝑛𝐸 =
1

9
1 − 3𝑣 + 3𝑣2

• 𝑛𝑊 =
1

9
1 − 3𝑣 + 3𝑣2

• 𝑛𝑁 =
1

9
1 − 1.5𝑣2

• 𝑛𝑆 =
1

9
1 − 1.5𝑣2

• 𝑛𝑁 =
1

9
1 − 1.5𝑣2

• 𝑛𝑁𝐸 =
1

36
1 + 3𝑣 + 3𝑣2

• 𝑛𝑁𝐸 =
1

36
1 + 3𝑣 + 3𝑣2

• 𝑛𝑁𝐸 =
1

36
1 − 3𝑣 + 3𝑣2

• 𝑛𝑁𝐸 =
1

36
1 − 3𝑣 + 3𝑣2

• 𝑑𝑒𝑛𝑠𝑖𝑡𝑦 = 1

At positions where there is fluid

At the position where there is a wall

Everything is zero!



LATTICE-BOLTZMANN ALGORITHM 
(3 STEPS)

•Collisions 

•Streaming

•Boundary Conditions



COLLISIONS

• Inside the collision step, the simulation uses the 
redistributes all the velocity vectors back into the 9 
discrete number density vectors.

• The collision step is the most computationally 
intensive step in the algorithm. 

• To think about the collision step conceptually, think 
about this step as the redistribution of the incoming 
vectors back into the four directions



MAXWELL-BOLTZMANN 
DISTRIBUTION

• The Maxwell-Boltzmann distribution describes the average distribution of non-
interacting material particles over various energy states in equilibrium.

𝐷 Ԧ𝑣 =
𝑚

2𝜋𝑘𝑇
𝑒−

𝑚 𝑣 2

2𝑘𝑇



What about when the particles are not in 
thermal equilibrium?



GENERALIZING THE FORMULA

• The velocity for each particle is a combination of the the macroscopic 
velocity and the thermal velocity:

• Then plug updated description into the distribution

Ԧ𝑒𝑖 ∙ 𝑐 = 𝑢 + Ԧ𝑣 or Ԧ𝑣 = Ԧ𝑒𝑖 ∙ 𝑐 − 𝑢

𝐷 Ԧ𝑣 =
𝑚

2𝜋𝑘𝑇
𝑒−

𝑚 Ԧ𝑒𝑖∙𝑐−𝑢
2

2𝑘𝑇



GENERALIZING THE FORMULA 
PART II

• Then to approximate the distribution function, use a the Taylor Series for 𝑒𝑥:

• Use the definition of macroscopic velocity densities to get the macroscopic 
densities for each particle:

• Finally, the formula can be used:

𝐷 Ԧ𝑣 ≈ 𝑤𝑖(1 +
3 Ԧ𝑒𝑖 ∙ 𝑢

𝑐
+
9

2
∙

Ԧ𝑒𝑖 ∙ 𝑢

𝑐

2

−
3

2
∙
𝑢2

𝑐2
)

𝑛𝑖
𝑒𝑞
= 𝜌𝐷 Ԧ𝑣 𝑛𝑖

𝑒𝑞
= 𝜌[𝑤𝑖 1 +

3 Ԧ𝑒𝑖 ∙ 𝑢

𝑐
+
9

2
∙

Ԧ𝑒𝑖 ∙ 𝑢

𝑐

2

−
3

2
∙
𝑢2

𝑐2
]

𝑛𝑖
𝑛𝑒𝑤 = 𝑛𝑖

𝑜𝑙𝑑 +𝜔(𝑛𝑖
𝑒𝑞
− 𝑛𝑖

𝑜𝑙𝑑)



STREAMING

• After the vectors collide and yield the correct number 
densities, This step is very simple – the program “streams” 
the vectors to adjacent steps

• This step only works under the assumption that 𝑢 ≪ 𝑐 so 
that particles can only stream one lattice point away.

(It’s a stream)



BOUNDARY CONDITIONS

• In this simulation, we use the “bounce-back” 
algorithm to handle cases where particles 
collide with boundaries.

• When a vector hits a boundary, the vector is 
then sent in the opposite direction



VISCOSITY

• Viscosity can be seen as the loss of the 
factor which energy is lost.

• As seen in the scenario below, the fluid in the 
top layer is flowing to the right, but the fluid 
in the bottom layer has no net motion.

• So if the fluid is viscous, the upper level will 
better drag the lower layers along with it.

• Viscous solutions accelerate the process of 
the reaching equilibrium as seen in the step 
function for collisions

𝑛𝑖
𝑛𝑒𝑤 = 𝑛𝑖

𝑜𝑙𝑑 +𝜔(𝑛𝑖
𝑒𝑞
− 𝑛𝑖

𝑜𝑙𝑑)



CUDA AND OPENGL
WITH LATTICE-BOLTZMANN



WHY DO GRAPHICS 
ACCELERATION?

Enhances performance 

for algorithms that are:

-massively parallel

-order independent

-computation intensive

LBM is all three of these 

things!



SOME GPU TERMS:

• CUDA - Compute Unified Device Architecture

• Proprietary (Nvidia)

• Computation focused

• OpenGL – Open Graphics Language

• Open Source!

• Graphics focused

• (OpenCL – Open Compute Language)

• Open Source!

• Computation focused

• We did not use this!



PARALLEL VS SERIAL COMPUTING:

Courtesy Nvidia

CPU: GPU:

task1

task3

task2 task1 task2 task3

Task kernel:



PARALLEL PROGRAMMING LEVELS

Course

Fine

Grid/Cluster computing

MPI (Message Passing 

Interface)

Multi-threading

SIMD

(single instruction 

multiple data)

We are here



VIDEO:

Courtesy Nvidia



HOW CUDA WORKS:

Courtesy Colorado School of Mines Courtesy Wikimedia



THE IMPORTANCE OF MEMORY

Courtesy Nvidia

PCIe is VERY slow:

5-10GB/s

GPU and CPU memory access is 

VERY fast:

up to 150GB/s (GPU)

So…

-Avoid repeated GPU/CPU 

Memcpy calls

-Prestore all vital data on GPU

-Keep frame data on GPU



WHY OPENGL?
-Platform independent!

-OSX, Linux, and Windows!

-Low-Level 3d graphics engine

-FAST!!!

-Supports CUDA/gl interop!

-data never leaves GPU

Games that use opengl:

-Left 4 Dead

-Doom 3

-Portal

-Counter Strike

-Far Cry

-Hitman

-and many more!

Courtesy Wikimedia



CUDA/GL INTEROP EXPLAINED:

-All memory resides inside GPU! (so it’s fast!)

-Double buffering prevents flickering

-PBO’s use uchar4’s, so 1 byte each for R,G,B and Alpha channels

-2d textures are mapped onto screen-sized rectangle object

-rendered with an ortholinear matrix (because 3d…)

Courtesy ResearchGate



OUR SOLUTION:

• The program:

• 1 node = 1 thread

• 1080p sim = ~2 million threads!

• O(n2)

• 3 kernels:

• Collide

• Stream

• Bounceback

• And lots of CPU-side functions!

• Our Setup:

• Programmed with C++ 

and Nvidia Nsight for 

Visual Studio

• Hardware:

• GTX 1060 and i5 CPU

• Can’t run it on a laptop…



PROGRAM STRUCTURE:

Initialize Fluid:

Initialize GLUT

Initialize 
d2q9’s

Initialize 
lattice 
buffers

Transmit 
buffers to 

GPU

Allocate 
GPU Memory

GLUT Idle 

Loop:

Init PBO

Set 
Callbacks

Map texture 
PBO

Launch 
Kernels!

Unmap
texture PBO

Draw 
textures

Swap frame 

buffers

Still 

running?

Yes

Free GPU 

memory

Close!

No

Call “Collide” Kernel

Call “Stream” Kernel

Call “Bounce” Kernel

Swap “before” and 
“after” lattice buffers

Stream everything 
else

Stream edge cases

Calculate macros

Calculate micros

Over 800 lines of code total:

http://pastebin.com/WRmwCgmY

http://pastebin.com/WRmwCgmY


DIFFICULTIES OF CUDA:

• Crappy debugging

• Custom error handling code is necessary

• No step through or anything AFAIK

• Print statements are a pain

• Everything is more complicated

• Memory allocation, kernel setup, and cpu/gpu interop

• No access to non-gpu variables

• Interop with opengl is incredibly complex to get running

• PBO’s, texture memory, and memory mapping 



THANKS!


