
Lattice-Boltzmann Algorithm
Using GPU Acceleration

Implementation Overview

Henry Friedlander & Tom Scherlis
Shady Side Academy Physics 3

19 Feb 2017

CONTENTS CONTENTS

Contents
1 Introduction 3

1.1 Abstract . 3
1.2 Eulerian Viewpoint vs. Lagrangian Viewpoint . 3
1.3 Maxwell-Boltzmann Distribution . 3

2 Lattice-Boltzmann Method 4
2.1 The Lattice . 4
2.2 Introduction . 5
2.3 Initial Conditions . 5
2.4 Collision Step . 6
2.5 Streaming Step . 7

2.5.1 Middle Case . 7
2.5.2 Edge Case . 7
2.5.3 Bounce Step . 8

2.6 Storing Values for plotting . 8

3 GPU Acceleration 9
3.1 Why Use GPU Acceleration . 9
3.2 CUDA – Compute Unified Device Architecture . 9
3.3 OpenGL – Open Graphics Library . 12

4 Using CUDA to implement LBM 13
4.1 Process Flow . 13
4.2 Initialization . 13
4.3 Adapting the iterative LBM to asynchronous threading 13
4.4 Using Array Swapping to Conserve Memory . 14
4.5 Collide Kernel . 14
4.6 Streaming Kernel . 14
4.7 Bounce Kernel . 14
4.8 Rendering in CUDA . 15

5 Benchmarking and Results 15
5.1 Methodology . 15
5.2 Benchmark Results and Analysis . 16
5.3 Screenshots . 17

6 User Interface 18
6.1 Running the Simulator . 18
6.2 Interfacing with the simulator . 19

7 Challenges 19
7.1 Edge Cases . 19
7.2 Boundary Conditions . 19
7.3 Debugging . 19

Version 1.2 1

LIST OF FIGURES LIST OF FIGURES

8 Concluding Thoughts 20

A Appendix A: Resources 20

List of Figures
1.1 Maxwell-Boltzmann Distribution . 4
2.1 Directions . 5
2.2 Visualization of the Streaming Step in the Middle Case 7
2.3 Visualization of Bounce Case . 8
3.1 CUDA Block Diagram . 10
3.2 CUDA Processing Flow . 11
3.3 Memory Bandwidth Comparison . 11
3.4 CUDA/OpenGL Interop . 12
4.1 Process Flow . 13
5.1 GPU/CPU MLUPS Comparison . 16
5.2 GPU/CPU Time Comparison . 17

Version 1.2 2

1 INTRODUCTION

1 Introduction

1.1 Abstract

CUDA and OpenGL packages were used to graphically accelerate the Lattice-Boltzmann Method
(LBM) Algorithms. Through the use of parallelization and efficient memory usage, considerable
optimization and efficiency is possible with LBM simulation. In this simulation, we model constant
2 dimensional fluid flow through a medium, and at every lattice node the fluid’s curl, probabilistic
velocity vectors, and pressure are calculated and available to be plotted on the screen.

Demo: https://www.youtube.com/watch?v=MSMGGoP24Hw

1.2 Eulerian Viewpoint vs. Lagrangian Viewpoint

There are generally two schools for tracking each particle of fluid inside a fluid simulation: the
Eulerian Viewpoint and the Lagrangian Viewpoint. The Lagrangian Viewpoint is the conventional,
intuitive algorithm for keeping track of fluids inside experiments; this method tracks each individual
molecule’s position and velocity vectors. While this method is effective for discretizing the movement
of solids, for fluids this simulation is limited by the number of nodes in the model being used. The
Eulerian Viewpoint is much more effective for modeling fluids, because not only is it faster but
also the simulation is not limited by the computer hardware. Rather than tracking each particle of
fluid, this viewpoint observes fixed points in space and measures how the fluid density, temperature,
velocity, etc. change on that point.

1.3 Maxwell-Boltzmann Distribution

The entirety of this algorithm rests on the Maxwell-Boltzmann Distribution1 of statistical mechan-
ics. This distribution is a probabilistic distribution which describes particle speeds in idealized gases
where particles are able to move relatively freely. This is the distribution at thermal equilibrium
where ~v is the thermal velocity, m is the mass, k is the Boltzmann constant, and T is temperature.

D(~u) =
m

2πkT
e−

m~v2

2kT (1)

A particle-speed probability distribution describes the likelihood of the particle reaching that speed
during the next time step. Since this distribution only applies to classical ideal gases, this represen-
tation of gases is not completely accurate because of various effects (e.g. relativistic speed limits,
quantum exchange interactions, and van der Waals interactions).

Rarefied gases are gases that undergo a reduction in their average density. They are similar to ideal
gases, and therefore the Lattice Boltzmann Algorithm, which is a relatively computationally simple
simulation technique, is accurate for approximating these gases. Lattice-Boltzmann is typically
used for computer modeling of aircraft flying through the upper levels of the atmosphere because
of its high accuracy and low computational cost.

1http://physics.weber.edu/schroeder/javacourse/LatticeBoltzmann.pdf

Version 1.2 3

https://www.youtube.com/watch?v=MSMGGoP24Hw
http://physics.weber.edu/schroeder/javacourse/LatticeBoltzmann.pdf

2 LATTICE-BOLTZMANN METHOD

Figure 1.1: The distribution of velocities vs probabilities

As seen in Fig. 1.1, the function has a peak, which indicates the most likely velocity at which the
particle would be traveling through a point in space. For example in Equation 1, which describes
fluid at thermal equilibrium, the peak would be at 0 because the net velocity should be 0. In cases
where the system is not in equilibrium the peak may be compressed, stretched, or shifted.

2 Lattice-Boltzmann Method

2.1 The Lattice

The Lattice-Boltzmann Method,2 as its name suggests, operates on a lattice. A lattice is a 2d
array, and in the case of a computer simulation, it corresponds to pixels on a screen. At each point
of the lattice, since the Eulerian Viewpoint is being implemented, the simulation tracks the flow
through that point and the likelihood that particles will move in various directions when at that
point. Although particles passing through that point on the lattice in the real world are able to
move in any direction, this method restricts particles to only be allowed to move in 9 directions
from the point.

2http://physics.weber.edu/schroeder/javacourse/LatticeBoltzmann.pdf

Version 1.2 4

http://physics.weber.edu/schroeder/javacourse/LatticeBoltzmann.pdf

2.2 Introduction 2 LATTICE-BOLTZMANN METHOD

Figure 2.1: Possible directions for the number probabilities
Source: Weber State University

As seen above in Figure 2.1, there are 8 vectors emanating from the point on the lattice and one
vector at the center. These vectors, defined starting from the top and proceeding clockwise, are nn
〈0, 1〉, nne 〈1, 1〉, ne 〈1, 0〉, nse 〈1,−1〉, ns 〈0,−1〉, nsw 〈−1,−1〉, nw 〈−1, 0〉, and nnw 〈−1, 1〉. Lastly,
vector 〈0, 0〉 is defined to be n0. Since this approach discretizes the directions which a particles
will be able to travel, probabilities that a particle will travel in any of these directions need to
be attached to model the continuous Maxwell-Boltzmann Distribution. After double integrating
the distribution over the entire range of vx and vy, the optimal probabilities can be found. These
probabilities (or weights), based on the shape of the Maxwell-Boltzmann Distribution, can be
calculated to be w0 = 4

9 , wn = ws = we = ww = 1
9 , and wnw = wne = wse = wsw = 1

36 (the
subscript denotes the direction).

2.2 Introduction

The algorithm sets up initial conditions and iterates a collision step and a stream step. There are
special cases for edges and barriers that are also evaluated throughout the stages of the algorithm.

2.3 Initial Conditions

Initially, we assumed that the fluid was equally distributed across the screen, the density of fluid at
every point was arbitrarily set to be 1, and that each position the x component of each position’s
velocity vector, v, was set to be the flow speed according to a set of equations.

n0 =
4

9
(1− 1.5v2)

nn =
1

9
(1− 1.5v2)

ns =
1

9
(1− 1.5v2)

Version 1.2 5

2.4 Collision Step 2 LATTICE-BOLTZMANN METHOD

ne =
1

9
(1 + 3v + 3v2)

nw =
1

9
(1− 3v + 3v2)

nne =
1

9
(1 + 3v + 3v2)

nse =
1

9
(1 + 3v + 3v2)

nnw =
1

9
(1− 3v + 3v2)

nsw =
1

9
(1− 3v + 3v2)

pressure = 1

vx = v

vy = 0

2.4 Collision Step

Inside the collide step, the algorithm redistributes all the probabilistic vectors pointing inward to
outward. In other words, the probabilistic vectors “collide” with each other to create new vectors
facing outward. Although this step of the algorithm is conceptually very straightforward, deriving
these probabilistic vectors collisions proves to be very difficult.

Define ω, where ν is defined to be the viscosity of the fluid.

ω =
1

3ν + 0.5

Inside the collide step, this formula derived from the Maxwell-Boltzmann distribution is used to
calculate the new number densities.

nnew
dir = nolddir − ω(n

eq
dir − n

old
dir) (2)

In this equation, dir represents one of the nine directions, and neq
dir is defined in equation 3 below.

Simple approximation of the Maxwell-Boltzmann Distribution with a Taylor series yields, where ~e
is defined to be the macroscopic velocity and ~u is defined to be the thermal velocity:

D(~v) ≈ wi(1 + 3(~edir · ~u) +
9

2
· (~edir · ~u)2 −

3

2
~u2)

Using the definition of a number density (neq = ρD(~v)), find the number density by substituting
the approximation of the probabilistic distribution.

neq
dir = ρ[wdir(1 + 3(~edir · ~u) +

9

2
· (~edir · ~u)2 −

3

2
~u2)] (3)

In the equation above ρ is defined to be the density of the fluid at the node. Finally substitute the
equilibrium number pressure (the approximate concentration of particles moving on a given vector)
into equation 2 to get the next number density of the next step.

Version 1.2 6

2.5 Streaming Step 2 LATTICE-BOLTZMANN METHOD

2.5 Streaming Step

2.5.1 Middle Case

Figure 2.2: Visualization of the Middle Case
Source: Weber State University

As seen by the figure 2.2, the simulation “streams” all the probabilistic vectors to the adjacent
points in their direction. The output values of this step are then fed back into the collision step of
the next iteration.

2.5.2 Edge Case

If the current point being streamed has a position that is on the edge of the screen (the where either
x or y equals either 0 or one less than the length of width), then set the vector in the opposite
direction equal to what a vector in that direction would be initialized to. For example, if the current
point is at the top of the screen, then since the vector pointing upward cannot be streamed to any
point displayed on the screen, the vector pointing downwards would be initialized to the same value
it was initialized in subsection 2.2 (in this case, ns = 1

9 (1− 1.5v2)).

Version 1.2 7

2.6 Storing Values for plotting 2 LATTICE-BOLTZMANN METHOD

2.5.3 Bounce Step

Figure 2.3: Visualization of the Bounce Case
Source: Weber State University

The bounce step handles the case where when the program streams the vectors inside an internal
solid barrier cell. In this case, the simulation "bounces" the vector in the opposite direction. Figure
2.3 displays the "bouncing" process. For example, the red vector, before streaming, is facing in the
northwest, but after the streaming step, it "bounces" back to, after this step, direct toward the
southeast.

2.6 Storing Values for plotting

In this simulation, the user has the option to display different properties of the simulated gas:
pressure, x or y component of the net probabilistic velocity vector, speed2 (that is, the square of
the magnitude of the velocity vector), or curl (defined in equation 4). To calculate ρ (the pressure)
at the specific point, sum all of the number densities.

ρ =
∑

ndir

Calculate the x and y components of the net probabilistic velocity vector for plotting.

ux =
(ne + nne + nse)− (nw + nnw + nsw)

ρ

uy =
(nn + nne + nnw)− (ns + nse + nsw)

ρ

Curl for a given point is calculated using the values of ux and uy to the north, south, east, and
west of the given point.

Curl = (ueasty − uwest
y)− (usouthx − unorthx) (4)

Version 1.2 8

3 GPU ACCELERATION

3 GPU Acceleration

3.1 Why Use GPU Acceleration

GPU acceleration enables the use of graphics processing hardware for computationally intensive
algorithms. GPU’s have thousands of compute units (cores), which make them very well suited
to parallel algorithms. There is considerable overhead when running GPU accelerated code, so
care must be taken to ensure that the extra time to setup CUDA acceleration actually results in a
performance increase. A GPU accelerated algorithm must meet the following requirements:

1. Massively parallel

2. Order independent (CUDA threads execute asynchronously)

3. Bottle-necked by computation, not memory

Thankfully, LBM fulfills all three of these requirements and thus there is considerable opportunity
for speed increases from using CUDA.

3.2 CUDA – Compute Unified Device Architecture

Cuda is Nvidia’s proprietary GPU computation acceleration system. The name describes both the
architecture itself as well as the software package to utilize it. CUDA is a system designed to run
computationally expensive, parallel algorithms on a GPU. The system is proprietary, and thus only
works on systems with CUDA-capable, Nvidia GPU’s.

CUDA uses "kernels" to describe functions designed to run on the many cores of the GPU. When
implementing kernels in C, the keywords __global__ and __device__ are used to designate GPU-
side functions, as distinct from CPU-side functions. A global function runs on the GPU, and can
be called from any device including the CPU or GPU. A device function runs on the GPU, but
can only be called from GPU code, such as another device or a global.

Alternatively, OpenCL is another good GPU acceleration architecture; however, it is more difficult
to implement and not as optimized as CUDA. CUDA requires Nvidia hardware whereas OpenCL
does not.

Version 1.2 9

3.2 CUDA – Compute Unified Device Architecture 3 GPU ACCELERATION

Figure 3.1: CUDA Block Diagram
Source: Colorado School of Mines

As shown in Fig. 3.1, the kernel functions are distributed across grids of threads. Each grid is
divided into Blocks, then redivided into Threads. In our implementation, each core has one thread
which runs the kernels for one pixel. Therefore, we have a 2d array of threads with dimensions
equal to the display dimensions.

Kernel code is distributed to the threads by streaming multiprocessors (SMs). SMs queue up all
kernel requests and allocate CUDA compute units for them to run on.

Version 1.2 10

3.2 CUDA – Compute Unified Device Architecture 3 GPU ACCELERATION

Figure 3.2: CUDA Processing Flow
Source: Wikimedia

Fig. 3.2 shows the processing flow of a GPU operated command. The diagram shows how memory
is accessed and returned to the CPU in a conventional CUDA-accelerated program. In our system,
however, we never send result data back to the CPU. Instead, we render it directly with OpenGL.
This is more efficient than piping the data back and forth on the PCIe bus (Peripheral Component
Interconnect Express bus), which connects the GPU to the CPU. Transmitting data between them
is very expensive because the process is limited to the speeds of the PCIe bus, which is an order of
magnitude slower than the GPU memory bandwidth (Fig. 3.3).

Figure 3.3: Comparison of memory bandwidths
Source: Nvidia

Version 1.2 11

3.3 OpenGL – Open Graphics Library 3 GPU ACCELERATION

3.3 OpenGL – Open Graphics Library

OpenGL is a high-speed platform independent graphics library. It runs at a low abstraction level,
which allows for more custom configurations at the cost of some design simplicity. We used a
need-to-know approach to OpenGL, because learning all of it would be a full project on its own.

OpenGL is primarily a 3d game engine, so we used a few workarounds to render a 2d image. We
create a rectangle object that is the same size as the display, map our 2d image to it as a texture, then
render orthogonally to display a dynamic 2d image. One of the key advantages of using OpenGL is
that the texture data exists exclusively on the GPU. By copying our image data directly into the
dedicated texture buffers from the CUDA code, we remove the need to ever transmit the data to
or from the CPU on the PCIe bus.

Figure 3.4: Inter-operation with CUDA and OpenGL
Source: Marwan Abdella via Researchgate.net

Fig. 3.4 shows the interaction between CUDA and OpenGL. As you can see, we write the frame data
directly into a pixel buffer object (PBO), which is then mapped as a 2d texture onto a rectangle
object before being rendered. We use OpenGL’s double-buffering to achieve smooth refreshing
without any flickering.

Version 1.2 12

4 USING CUDA TO IMPLEMENT LBM

4 Using CUDA to implement LBM

4.1 Process Flow

Figure 4.1: Process Flow of CUDA-Accelerated LBM

4.2 Initialization

When the program is first run, the simulation calls InitFluid, which initializes the initial conditions
of the fluids and the variable related to the fluid. To store the number density vectors and various
related to these vectors, pressure and x and y velocity, we created a struct called lbm_node which
stored an array of the vectors and variables which we referenced throughout the document. To
store the constants associated with this simulation, we created a parameter_set set which stored
ν, ω, the dimensions of the screen, the flow speed into the screen, the color scheme, and the render
mode.

4.3 Adapting the iterative LBM to asynchronous threading

Since threads are asynchronous, we are forced to make each of the threads independent of each other.
This turns out to be an issue when converting from an iterative approach to a parallel one with
CUDA kernels. For example, in an iterative approach, many of the steps rely on both the entirety
of the previous step and specific adjacent steps to be completed in order. To fix this, we divide the
algorithm of the graphics card into 3 independent kernels, collide, stream, and bounce. While this

Version 1.2 13

4.4 Using Array Swapping to Conserve Memory 4 USING CUDA TO IMPLEMENT LBM

is slower than having one kernel, it is necessary to ensure that previous steps are completed before
moving forwards.

4.4 Using Array Swapping to Conserve Memory

An important restriction of parallelism is that threads are executed in a random order. Therefore,
all data must be read from one array into a separate output array to ensure that the read array
is not modified until all threads have executed. To save memory, we only initialize two arrays,
array1_gpu and array2_gpu. Inside the kernelLauncher function, we construct two lbm_node
pointers, before and after. These pointers swap between pointing to array1 and array2 between
each kernel launch, so only the results from the previous step are saved and the input data is thrown
away.

We use flat indexing for each array to represent a 2d matrix (index [x][y] would be index [x ∗
width+ y]), which allows the simulation to directly access the value of the array rather than force
the computer to access the pointer to another array. This speeds up all memory accesses throughout
the program.

4.5 Collide Kernel

Since the implementation of the Collide step inside the CUDA framework is not dependent on
where in the lattice the point is, transferring the code to a CUDA framework is straightforward and
similar to an iterative framework. In an iterative framework, the code simply loops over the entire
lattice and performs identical collisions, as outlined in §2.4, on each point. For a CUDA version,
the kernel only describes one node and is called over an array of nodes. The collide kernel first
calculates macroscopic variables such as ρ, ux, and uy before calculating the resultant microscopic
variables, including the number density of the flow in each direction.

4.6 Streaming Kernel

The streaming step was significantly less trivial to implement than the collide step, because a
multitude of tests needed to be completed to determine whether the node is a middle case or an
edge case, and if it is an edge case then determine which type of edge case it is. In an iterative
approach, many of the steps rely on both the entirety of the previous step and specific adjacent
steps to be completed in a specific order. Therefore to make the kernel independent of execution
order, we stream from one array into another array without ever referencing resultant data.

4.7 Bounce Kernel

Inside the bounce step, we both simulate the bounce step of the algorithm and render the data.
Inside the algorithm portion of this device, we first verify that the position is a wall and complete
the bounce step by reversing all fluid vectors received in the stream step. We then stream these

Version 1.2 14

4.8 Rendering in CUDA 5 BENCHMARKING AND RESULTS

reflected vectors out to prepare for the subsequent collision step. Finally, the kernel runs the
rendering algorithms.

4.8 Rendering in CUDA

The most computationally expensive operation when using GPU acceleration is to transmit data
across the PCIe bus. To avoid this, we chose to use OpenGL for rendering. The actual process
that OpenGL uses to display a 2d PBO is detailed in §3.3. The PBO is allocated on GPU memory,
so writing to it from the GPU is allowed without computationally expensive calls to cudaMemcpy.
Writing to the PBO is done at the end of the bounce step to avoid having to launch an additional
kernel.

The PBO is an array of Uchar4’s, with the 4 uchar’s representing the r, g, b, and a channels. There
are multiple render modes which are defined in an enum, including mRho, mCurl, mSpeed, mUx, and
mUy. In the first two modes, the colors blue and green are used to differentiate between positive and
negative values respectively. The mode is stored with the other parameters in the parameter_set
struct, and it can be set from hotkeys on the keyboard.

Render Modes
mRho Pressure gradient mode
mCurl Plots Curl (infinitesimal rotation of fluid)
mSpeed Plots the square of the speed of the fluid
mUx Plots horizontal velocity component
mUy Plots vertical velocity component

An interesting phenomenon to note is that it takes slightly longer for Curl to render than the other
modes. This is due to the curl algorithm relying on the velocities of neighboring nodes in addition
to the current node. The difference is not noticeable, but it is visible inside the benchmarks.

5 Benchmarking and Results

5.1 Methodology

We compared our algorithm to a CPU based Java implementation of LBM written by Daniel
V. Schroeder at Weber State University. The program uses separate threads for rendering and
simulating, and uses Java Swing for the GUI.

For each test, we rendered densities and ran an average framerate benchmark using FRAPS for
20 seconds. The CPU version refreshes once per frame, so the refresh rate is equivalent to the
frame rate. For our GPU version, however, we have the capability of having a variable number of
refreshes-per-frame. We added this because OpenGL will not render at a framerate faster than the
monitor’s refresh rate in order to prevent screen tearing. In our case, it was capping the framerate
at 60Hz. Therefore, in order to calculate refreshes-per-second we chose to measure with 10 refreshes
per render to prevent the speed from being capped by OpenGL.

Version 1.2 15

5.2 Benchmark Results and Analysis 5 BENCHMARKING AND RESULTS

5.2 Benchmark Results and Analysis

Figure 5.1: Comparison of refresh rates for CPU and GPU LBM

Fig. 5.1 shows the speed differences between the CPU and GPU implementations of the Lattice-
Boltzmann Method. The speed is measured in million lattice updates per second, or MLUPS.
This gives an approximation of how long each lattice update takes including all of the overhead of
rendering.

Note that for the CPU implementation the MLUPS benchmark is constant relative to the number
of lattice nodes. This is because increasing the number of nodes simply increases the number of
iterations required for the algorithm linearly.

Alternatively, in the GPU implementation there is a slight increase in MLUPS as the number of
nodes increases. This is because there is considerably more overhead in calling GPU kernels than
there is with initializing a loop. The time per frame spent initializing the kernels is constant relative
to the number of nodes, and that overhead takes a significant amount of time. So when the number
of nodes increases, the refresh rate decreases so it spends more time running threads compared to
the overhead of initializing kernels. This results in a slight MLUPS increase as the number of nodes
increases.

Ultimately, our algorithm has an approximately 3.5-4x speed increase compared to the CPUmethod,
and that difference increases as the size of the field increases.

Version 1.2 16

5.3 Screenshots 5 BENCHMARKING AND RESULTS

Figure 5.2: Comparison of refresh times for CPU and GPU LBM

Fig. 5.2 shows the amount of time it takes per lattice update for the CPU and GPU implementa-
tions. Both implementations grow in linear time relative to the number of nodes. The CPU update
time grows much faster than the GPU update time due to the higher MLUPS rate of the GPU
implementation.

One might expect the GPU implementation to increase with constant time because the nodes are
calculated in parallel, however that is quite untrue. While the implementation is designed to run
with massive parallelism, there is a limited number of cores on the GPU (1280 in the case of
our GTX 1060). Because it cannot run more than 1280 nodes at a time, it still has to iterate a
considerable number of times.

5.3 Screenshots

Version 1.2 17

6 USER INTERFACE

Demo: https://www.youtube.com/watch?v=MSMGGoP24Hw

6 User Interface

6.1 Running the Simulator

Running the CUDA-accelerated LBM simulator requires CUDA-capable hardware, such as a recent
Nvidia graphics card. OpenGL must also be installed, but it is usually included with most graphics
driver packages anyways. We used dynamic linking to enable OpenGL support, so the OpenGL.dll
(dynamic linked library) file must be present in the root directory of the compiled LBM simulator.

Currently, the simulation resolution is set at compile-time, so unless you want to stick with one
resolution, it is useful to build the program manually rather than downloading a windows binary.
To build the program, simply load the Visual Studio project file in Visual Studio. Nvidia Nsight
must be installed to build it. All dependencies besides the CUDA-specific ones are included in
a portable dependencies folder inside of the project folder, so there is no need to reconfigure the
project settings or install any other libraries.

Version 1.2 18

https://www.youtube.com/watch?v=MSMGGoP24Hw

6.2 Interfacing with the simulator 7 CHALLENGES

6.2 Interfacing with the simulator

Interacting with the simulator is done with the mouse and keyboard. In addition, the window can
be freely resized using OpenGL’s built-in anti-aliasing algorithms.

LBM Controls
Left Mouse Draw boundaries with the mouse.

(A red cursor is used to show the current mouse position on the lattice)
Right Mouse Erase boundaries with the mouse
1-5 Set render mode(ρ, curl, speed2, ux, uy)
q Clear boundaries
w Reset simulation
a-f Load preset boundaries (short line, long line, diagonal line, square)
z Set flow speed using 1-0 (requires a simulation reset afterwards)
x Set viscosity using 1-0
c Set number of updates per render using 1-0

7 Challenges

7.1 Edge Cases

The first difficulty when implementing LBM is the edge cases. Edge cases are defined as the nodes
immediately contacting the borders of the virtual wind tunnel, including the left and right where
fluid enters and exits, as well as the flanks (the top and bottom). Specific cases must be declared to
handle each edge case, and errors here can ripple throughout the simulation to cause major issues
elsewhere in the simulation.

7.2 Boundary Conditions

Another difficulty is the boundary conditions (i.e., what to do when the fluid is flowing into a solid
wall). There are many ways to do this, but we used the bounceback algorithm. The bounceback
algorithm redirects all flow towards the walls back out of them, and it enforces the no-slip conditions
along each wall. One of our biggest troubles with the bounceback step was that the immediately
following collide step would be using the results of bounceback that had not been streamed out of
each node. That meant the pressure inside of a wall would steadily increase until data overflow
occurs. We fixed this by combining streaming within the bounceback step.

7.3 Debugging

Debugging GPU kernels is a struggle. There is no step-through, and if an error flag is raised there
must be dedicated error handling code to notice it. CUDA alsodoes not support breakpoints. To
isolate crash points, we deleted whole blocks of code and slowly reinstated it until the offending

Version 1.2 19

A APPENDIX A: RESOURCES

line is found. We set up a system of listener nodes that dump all of their data in every step into a
log file in order to see exactly what is happening at a node.

8 Concluding Thoughts

In this project, we succeeded in implementing a 2 dimensional Lattice-Boltzmann method using
CUDA graphics acceleration and OpenGL. We are able to display curl, ux, uy, and speed2, which
model constant 2 dimensional fluid flow through a medium. We learned how to use CUDA and
OpenGL, and how to derive and implement the LBM algorithm. We also learned some code
optimizing skills, and how to use trace-points for debugging without breakpoints (CUDA does
not support breakpoints). By using computation fluid dynamics (CFD), we learned algorithm
design in a highly threaded framework where you cannot rely on execution order. This was a
very educational experience, and while a considerable portion of the project was taken up by the
monotony of debugging, it was very rewarding to finally see our system outpace many of the other
LBM implementations.

A Appendix A: Resources

First and foremost, we would like to dearly thank Mark Antosz. And then Dr. P.

Sources

http://physics.weber.edu/schroeder/javacourse/LatticeBoltzmann.pdf

Tutorials

http://www.informit.com/articles/article.aspx?p=2455391

https://developer.nvidia.com/gpu-computing-webinars

Pictures

http://www.frontiersin.org/files/Articles/70265/fgene-04-00266-HTML/image_m/fgene-04-00266-g001.
jpg

https://developer.nvidia.com/sites/default/files/akamai/cuda/images/product_logos/
NV_CUDA_wider.jpg

https://www.opengl.org/img/opengl_logo.png

https://commons.wikimedia.org/wiki/File:CUDA_processing_flow_(En).PNG

https://devblogs.nvidia.com/parallelforall/nvlink-pascal-stacked-memory-feeding-appetite-big-data/

http://geco.mines.edu/tesla/cuda_tutorial_mio/

https://www.researchgate.net/profile/Marwan_Abdellah/publication/274900913/figure/
fig2/AS:304502231060533@1449610397787/Communication-between-CUDA-and-OpenGL-on-screen-rendering-context-The-final-projection_
big.png

Version 1.2 20

http://physics.weber.edu/schroeder/javacourse/LatticeBoltzmann.pdf
http://www.informit.com/articles/article.aspx?p=2455391
https://developer.nvidia.com/gpu-computing-webinars
http://www.frontiersin.org/files/Articles/70265/fgene-04-00266-HTML/image_m/fgene-04-00266-g001.jpg
http://www.frontiersin.org/files/Articles/70265/fgene-04-00266-HTML/image_m/fgene-04-00266-g001.jpg
https://developer.nvidia.com/sites/default/files/akamai/cuda/images/product_logos/NV_CUDA_wider.jpg
https://developer.nvidia.com/sites/default/files/akamai/cuda/images/product_logos/NV_CUDA_wider.jpg
https://www.opengl.org/img/opengl_logo.png
https://commons.wikimedia.org/wiki/File:CUDA_processing_flow_(En).PNG
https://devblogs.nvidia.com/parallelforall/nvlink-pascal-stacked-memory-feeding-appetite-big-data/
http://geco.mines.edu/tesla/cuda_tutorial_mio/
https://www.researchgate.net/profile/Marwan_Abdellah/publication/274900913/figure/fig2/AS:304502231060533@1449610397787/Communication-between-CUDA-and-OpenGL-on-screen-rendering-context-The-final-projection_big.png
https://www.researchgate.net/profile/Marwan_Abdellah/publication/274900913/figure/fig2/AS:304502231060533@1449610397787/Communication-between-CUDA-and-OpenGL-on-screen-rendering-context-The-final-projection_big.png
https://www.researchgate.net/profile/Marwan_Abdellah/publication/274900913/figure/fig2/AS:304502231060533@1449610397787/Communication-between-CUDA-and-OpenGL-on-screen-rendering-context-The-final-projection_big.png

	Introduction
	Abstract
	Eulerian Viewpoint vs. Lagrangian Viewpoint
	Maxwell-Boltzmann Distribution

	Lattice-Boltzmann Method
	The Lattice
	Introduction
	Initial Conditions
	Collision Step
	Streaming Step
	Middle Case
	Edge Case
	Bounce Step

	Storing Values for plotting

	GPU Acceleration
	Why Use GPU Acceleration
	CUDA – Compute Unified Device Architecture
	OpenGL – Open Graphics Library

	Using CUDA to implement LBM
	Process Flow
	Initialization
	Adapting the iterative LBM to asynchronous threading
	Using Array Swapping to Conserve Memory
	Collide Kernel
	Streaming Kernel
	Bounce Kernel
	Rendering in CUDA

	Benchmarking and Results
	Methodology
	Benchmark Results and Analysis
	Screenshots

	User Interface
	Running the Simulator
	Interfacing with the simulator

	Challenges
	Edge Cases
	Boundary Conditions
	Debugging

	Concluding Thoughts
	Appendix A: Resources

