
Final Report:
Highly Dynamic Quadcopter Control For Drone Racing

Alvin Shek and Tom Scherlis

Abstract— Drone racing involves navigating a small quad-
copter through a series of gates at high speeds, often requiring
highly dynamic flight and careful consideration of the con-
straints presented by the drone gates themselves. In this work,
we present an approach to generate optimal minimum-snap ref-
erence trajectories given only the positions and orientations of
the gates. We also present a controller based on state-feedback
linearization and MPC in order to track these trajectories in
real-time.

Video: https://youtu.be/uN9TzCkSSKk
Code: https://git.io/JfCZS

I. INTRODUCTION

Quadcopters are highly dynamic, 6-degree-of-freedom
nonlinear systems that often need to follow complex paths.
Their prominence has grown significantly over the past
decade from applications such as video-making and racing.
We were inspired by the idea of designing autonomous
quadcopters to participate in these races, and possibly other
applications such as defense.

Typically, nonlinear systems can be approximated as
linear and solved with fast, effective approaches such as
Linear Quadratic Regulator(LQR) and Model Predictive
Control (MPC). However, linear approximations only hold
true close to their set point, and grossly miss the true values
outside this neighborhood. For quadcopters, the small angle
approximation assumes the quadcopter will remain near the
neutral hovering state. While this assumption works well
for applications in cinematography and surveillance, the
model fails for use cases that require high-speed, dynamic
maneuvering such as drone-racing and target tracking.

In this paper, we focus on the application of drone racing,
where quadcopters are required to fly time-optimal paths
through gates that are highly dynamic and violate small
angle approximations. Differential flatness is a property
that allows a nonlinear system to be separated into a
linear system and a nonlinear transformation mapping
between the two systems [11]. We exploit the differential
flatness property of quadcopter dynamics to apply feedback
linearization on the nonlinear dynamics, enabling us to solve
a linear, transformed system for the optimal controls. We
apply MPC on this flat system and compare its performance
to LQR.

Tracking typically involves following a series of waypoints
defined by position and orientation, but in this paper, we also
present a method for generating optimal reference trajectories

through a series of drone gates, such that we indirectly
minimize the low-level controller efforts.

We will be using the MIT FlightGoggles simulator [9]
for testing, as it has an implementation of the quadcopter
dynamic. We use the ROS framework to develop our control
software such that it runs in real-time with the simulator. We
use ground-truth position for feedback.

II. PROBLEM STATEMENT

The problem is composed of two parts. First, we must
generate a reference trajectory parameterized by time for
the controller, given a list of gate positions and orientations.
Second, we must design a controller to track this trajectory.

We define two coordinate frames: the fixed world
frame (North-East-Down) and the quadcopter body
frame. A quadcopter’s state is typically made up of position,
orientation, linear velocity, and angular velocity respectively:

x = [x, y, z, φ, θ, ψ, ẋ, ẏ, ż, p, q, r]T

where position and velocity are defined NED world frame.
p, q, r respectively represent rate of change of angular
velocity about x, y, z. φ, θ, ψ are euler angles about x, y, z
respectively.

Most quadcopters take as input desired desired mass-
normalized thrust and angular velocities:

u = [T, p, q, r]T

With this state and control space, our goal is to have the
controller find some optimal control trajectory to take the
quadcopter from initial state x0 and track a trajectory xg.
For the other aspect of the project, our challenge was to
convert a set of gate positions and orientations into a spline
in order to determine xg.

For simulation, we use MIT Flightgoggles [9]. Flightgog-
gles provides a quadcopter dynamics model simulating the
rigid body dynamics, rotor forces, and rigid body aerody-
namic forces.

III. RELATED WORK

In [12], differential flatness is also used to apply a linear
controller to drone dynamics. However, rotor drag makes
up a very significant portion of the dynamics calculations in
[12]. In our use case, however, FlightGoggles only models
rigid-body aerodynamics in the simulation, which allows us

https://youtu.be/uN9TzCkSSKk
https://git.io/JfCZS


to avoid this additional complexity.

[8] Presents an approach to quadcopter trajectory genera-
tion using minimum snap trajectories. We build on this work
by adding directional constraints as a means to enforce travel
direction through an obstacle such as a drone gate, window,
or doorway. We also implemented two ways of determining
trajectory durations. We also discuss the application of these
trajectories to the example of drone racing.

IV. METHODOLOGY

A. Optimal Spline Generation

To generate reference trajectories, we build on the min-
imum snap trajectory generation in [8]. Snap, the fourth
derivative of position, is minimized as it indirectly minimizes
angular velocity inputs p, q, r. We parameterize trajectories
as fifth order piecewise polynomials parameterized by time.
We build polynomials for x = ([x, y, z])

>. ψ is computed
separately as a post-processing step to keep the quadcopter
oriented forward along the trajectory.

xn(t) = An +Bn(t− tn) +Cn(t− tn)2 +Dn(t− tn)3

+En(t− tn)4 + Fn(t− tn)5
(1)

Where n corresponds to the index of the spline segment
containing t, and tn is the time associated with the start of
segment n.

To minimize snap of a segment, we minimize the integral
from 0 to dn of the 4th derivative of the polynomial, where
dn is the duration of segment n, equal to tn+1 − tn. To
simplify things, we focus only on one dimension, x.

sn =

∫ dn

0

[
d4

dt4
xn(t)

]2
dt (2)

Thus, the total snap s over a given dimension is:

s =

N∑
n=0

sn (3)

Where N is the total number of segments on the trajectory.
We therefore choose to minimize sT s to minimize snap in
all dimensions.

1) Formulating the QP: To solve using a QP solver, we
must put the problem into QP form:

min
1

2
xTHx+ fTx

s.t. Lx ≤ b
(4)

First, we frame s as a linear combination of our optimiza-
tion variables, A,B,C,D,E, F . We also assume that tn and
dn are known ahead of time for each segment. Thus, sn for
a single dimension is computed as:

sn = kn
TQn ∗ kn (5)

where kn is a vector of coefficients:
[An, Bn, Cn, Dn, En, Fn] and Qn is the positive
semidefinite hermitian matrix.

To define Q, we need to plug dn and tn into (2). Replacing
the square with an outer product allows us to compute sn as
a linear function of kn.
Qn is derived in [13] as:

Qn =

[
04×4 04×2
02×4 Wn

]
(6)

where:

Wn =

[
24 ∗ 24 ∗ dn 24 ∗ 120 ∗ 1

2 ∗ d
2
n

24 ∗ 120 ∗ 1
2 ∗ d

2
n 120 ∗ 120 ∗ 1

3 ∗ d
3
n

]
(7)

24 and 120 correspond to the coefficients that arise from
differentiating eq 1. dn is the duration of the segment. This
can be generalized for any order polynomial minimizing the
integral of any order derivative.

Thus, to solve for the full trajectory we set
x = [k0;k1; ...kN ] Likewise, H = diag([Q0,Q1, ...QN ]).

2) Waypoint constraints: Waypoint constraints define the
value of a given derivative of the polynomial at time 0.
For example, a zero-order waypoint constraint defines the
position at the beginning of the segment. A first order
constraint defines the velocity.

We can put these constraints into matrix form as follows.
Start by letting ct(t, o) correspond to the vector correspond-
ing to the t coefficients of equation 1 at order o. For example,
ct(t, 0) = [t, t2..., t5]T , whereas ct(t, 4) = [0, 0, 0, 0, t, t2]T .
Likewise, let cd(o) correspond to the polynomial coefficients
from differentiation at order o. For example, for cd(0) =
[1, 1, 1, 1, 1, 1]T whereas cd(4) = [0, 0, 0, 0, 24, 120]T . The
overall coefficient vector c(t, o) is computed as the elemen-
twise product of ct and cd. Thus:

dnxn
dtn

= c(t, n)Tkn (8)

Thus, we can easily add each of these constraints as an
equality constraint:

c(t, n)T ∗ kn = b (9)

where b is the desired waypoint value. This can be relaxed to
a pair of inequality constraints in order to enforce waypoints
with a nonzero acceptable radius.

3) Continuity Constraints: To enforce continuity along
the spline, we construct constraints that the values of each
derivative of interest must be equal for connecting segments.
In our case, we enforce 2nd order continuity. For each pair
of segments xn(t) and xn+1(t), we enforce the following:

xn(dn) = xn+1(0)

x′n(dn) = x′n+1(0)

x′′n(dn) = x′′n+1(0)

(10)

These can be formulated as equality constraints in the form

c(dn, o)
T ∗ kn + c(0, o)T ∗ kn+1 = 0 (11)



Where o is the order of the continuity constraint.
Adding these constraints to our QP formulation is
as simple as adding two rows to L in the form
[01×6n, c(dn, o)

T , c(0, o)T ,01×N−6(n+1)], where one
of the rows is made negative in order to enforce equality as
a pair of inequality constraints. The zero vectors are used
to pad the coefficient vectors to correspond with the correct
pair of k vectors.

4) Direction constraints: Finally, to enforce the direction
of flight at a given point, we introduce directional constraints.
These are useful for constraining the direction of, say, the
velocity vector at a given time without constraining it’s
magnitude. In order to construct these constraints, we need to
optimize all 3 dimensions of the parametric splines together,
since they relate x, y and z. As shown above for continuity
constraints, we can easily constrain the sum of any set
of polynomials at some time t, where each polynomial is
characterized by its kn vector.

In order to constrain direction, we constrain the motion in
all directions orthogonal to the desired direction to zero, or
some radius as desired. These directions are the basis vectors
n1 and n2 null space of the desired direction vector:

c(t, o)T kx,nc(t, o)T ky,n
c(t, o)T kz,n

 · n1 = 0

c(t, o)T kx,nc(t, o)T ky,n
c(t, o)T kz,n

 · n2 = 0

(12)

An additional constraint can be added to enforce positive
dot product with the desired direction vector if necessary.

5) Creating trajectories for drone races: For each gate,
we add 3 constraints:

1) Position waypoint at the center of the gate
2) 1st order direction waypoint along the direction of the

gate
3) Continuity constraints up to acceleration on the con-

necting spline segments
6) Determining Segment durations: So far, the trajectory

optimization has assumed that dn of each segment is known.
We determined two ways to solve for dn:

Higher level optimization: A cost function can be con-
structed to weight the total trajectory duration against the
total snap (or jerk, acceleration, etc) along the trajectory by
reusing the H matrix from eq 4, but generalized to some
order o:

xTHx+ α

N∑
n=0

dn (13)

This nonlinear optimization problem can then be solved
to find the optimal durations and coefficients for some
aggressiveness determined by tuning α. In practice, however,
this process was slow and often did not converge well, so
we also use a second method:

Linear velocity assumption: dn can be calculated based
on the euclidean distance between the segment’s endpoints
and assuming some linear velocity. While not optimal, the
results were acceptable and the solution is analytical. Using
this assumption allows very fast (≤10ms) computation of an
optimal spline for around 15 gates. This allows the user to
recompute the spline online as needed.

Fig 1: Trajectory Example

B. Controller

The first step for designing the controller is to map the
original states and controls to the flat system. The new flat
states can be represented as follows:

x = [x, y, z, ẋ, ẏ, ż, ψ]T

Linear position and velocity can be controlled using only
roll(θ) and pitch(φ), leaving yaw(ψ) redundant. For this
reason, roll and pitch can be treated as part of control space
as desired attitude and handled by the our level attitude
controller. Angular rates are inputs into a typical low-level
quadcopter controller and so they are not needed in the state.

Control:

u = [up
T , uψ]

T (14)

where up is related to linear acceleration:

up = RTz (ψ)R
T
y (θ)R

T
x (φ)

 0
0
−1

 Td
m

(15)

ẍÿ
z̈

 = up +

00
g

 (16)

and uψ is desired yaw rate r:

r = p
sφ
cθ

+ r
cφ
cθ

(17)

We now have a mapping from the flat states and their
derivatives to the original states and their control inputs,



which means the system is differentially flat. The dynamics
of the flat system can be expressed as a general linear system:

ẋ = Ax+Bu+ bg (18)

where A, B are defined as:

A =

03x3 I3x3 03x1
03x3 03x3 03x1
01x3 01x3 01x1

 (19)

B =

03x3 03x1
I3x3 03x1
01x3 1

 (20)

and b is a vector that factors in gravity, g, into z-axis
acceleration:

b =
[
0 0 0 0 0 1 0

]T (21)

The above system can be fed into common algorithms
like LQR and MPC. Now that we have the optimal controls
of the flat system, we need to transform these back to the
original control space.

The low-level controller built into FlightGoggles takes
as input angular rates and mass-normalized thrust. Thrust
is simply the norm of the acceleration vector, up, but we
perform an additional step of aligning the vector with the
quadcopter’s current z-axis rather than the desired z-axis.
Given the current normal vector of the quadcopter, n:

Td = max(0,n · up) (22)

The max operation ensures that the drone won’t attempt
to exert negative thrust. Because thrust is nonlinear, we
cannot enforce positive thrust in our controller. This can
lead to certain cases where the desired negative thrust is
unattainable.

Given our derivation of acceleration vector up from (15),
we can derive desired roll and pitch:

z = Rz(ψ)up
−m
Td

= RTy (θ)R
T
x (φ)

00
1

 (23)

z =

z1z2
z3

 =

−sθcφsφ
cθcφ

 (24)

φd = sin−1(−z2)

θd = tan−1(
z1
z3

)
(25)

We can set desired yaw ψd = 0 since it is arbitrary, or
atan2(y′, x′) in order to fly straight forwards at all times.

With the above high-level controller providing desired
attitude, we tuned a low-level PD controller to output the
angular rates to achieve this target. FlightGoggles provides
a high-frequency(around 1kHz) PD controller converting
angular rates to direct rotor torques. This mimics the inputs
of most commercial quadcopters. This architecture is shown
below:

Fig 2. Control Architecture

We tuned our PD controller by producing step responses
of desired attitutes that oscillated +/- some angle. With this,
we increased Kp, the proportional gain to minimize time
taken to reach a target, and increased Kd, the derivative
gain to eliminate any oscillations.

We overall chose the following parameters for the MPC
Controller:

Q = diag(20, 20, 20, 0.1, 0.1, 0.1, 1) ∈ R7

R = diag(0.1, 0.1, 0.1, 10) ∈ R4

S = Q ∗ 10 ∈ R7

(26)

The Q matrix represents the weights we place on error
of different components of the state, and for our model, we
weighed error in state the most since position-tracking was
the most important.
The R matrix represents the weights we place on control
effort, and for our model, we chose to minimize yaw-rate
the most since we don’t want the quadcopter to spin
unnecessarily.
The S matrix represents the weights placed on final state
error, and we chose to weight this more heavily to place
priority on reaching a target state.
The MPC controller was run with a 10-step horizon at
20Hz, or overall 0.5 second horizon.

V. EXPERIMENTS

We initially developed an LQR controller to test our
system, and used acceleration from the reference trajectory
as a feedforward. In practice, this feedforward becamse
ineffective when error grew, which only caused error to
grow further. We decided to also develop an MPC controller
due to it’s ability to track full trajectories rather than just
stabilize the system. Overall, the MPC controller massively
decreased tracking error and improved the cornering
performance significantly. The below figure shows compares
performance of both controllers in tracking error of the



quadcopter while moving at approximately 25mph:

Fig 3. LQR Tracking Error

Fig 4. MPC Tracking Error
The above two figures compare absolute tracking error of

linear position and velocity of both controllers. The
individual plots are ordered in row-major order: x, y, z,
ẋ, ẏ, ż. Comparing corresponding axes scales, LQR
controller has nearly double the error of MPC. The

oscillating absolute error indicates that both controllers
oscillate above and below the desired reference trajectories.

The below figure demonstrates the MPC controller during
a test run:

Fig 5. MPC on a sample track
In the figure above, the blue arrows show show MPC

predicted trajectory over the time horizon. The green lines

are part of the entire pre-generated spline. The red line
shows the reference trajectory for the same time horizon.
The figure shows how applying feedforward input given a

future time horizon helps the drone handle sharp turns
well. The LQR controller here would simply attempt to

follow the current immediate reference pose using feedback
error from the previous timestep. In the above scenario, the

LQR controller causes the drone to undershoot the turn
completely.

VI. CONCLUSION

Overall, we first implemented a method for generating
optimal reference trajectories through a series of drone gates,
such that we indirectly minimize the low-level controller
efforts. The generator takes as input a series of drone
gate positions and orientations and a hyperparameter of
aggressiveness α that defines how fast to move through the
trajectory. Second, we implemented feedback linearization
on the differentially flat quadcopter dynamics and compared
the performance of two controllers, MPC and LQR, on this
system.
Through the optimal spline generation, we learned much
about polynomial splines and how to formulate complex
constraints such that they can be solved with quadratic
programming. We also solidified our understanding of two
popular controllers, LQR and MPC so we can comfortably
apply these in industry. We learned the tradeoffs between
horizon, time discretization granularity, and computation
time in order to run our MPC controller in real time. We
also explored the idea of feedback linearization to apply
effective, but linear-based controllers to a nonlinear system.
Possible future improvements could include the use of a
rotor drag model in our simulation and differential flatness
model, as well as learning-based techniques which we orig-
inally intended to use to improve disturbance rejection and
overall performance. In practice, most drone races involve
multiple laps, so ILC could be used to modify our reference
trajectories in order to reduce repetive tracking errors. The
low-level controller stack could be replaced with adaptive
controllers to improve performance and reduce the sensitivity
to tuning. Overall, much of our work focused on the soft-
ware implementation and tuning of our trajectory generation
and control systems. Going forward, we plan to reuse this
work and specifically apply it to planning and control for
an Autonomous Underwater Vehicle (AUV) built by the
undergraduate robotics club.

REFERENCES

[1] A Review of Control Algorithms for Autonomous Quadrotors:
https://arxiv.org/pdf/1602.02622.pdf

[2] Dynamics modelling and linear control of quadcopter:
https://ieeexplore.ieee.org/document/7813499

[3] Quadrotor control: modeling, nonlinear control design, and simulation:
https://www.kth.se/polopoly˙fs/1.588039.1550155544!/Thesis%20KTH%20-
%20Francesco%20Sabatino.pdf

[4] Teaching UAVs to Race: End-to-End Regression of Agile Controls in
Simulation: https://arxiv.org/pdf/1708.05884.pdf

[5] Quadcopter Dynamics, Simulation, and Control:
http://andrew.gibiansky.com/downloads/pdf/Quadcopter%20Dynamics,%20Simulation,%20and%20Control.pdf



[6] OIL: Observational Imitation Learning:
https://arxiv.org/pdf/1803.01129.pdf

[7] Autonomous Driving Motion Planning With Con-
strained Iterative LQR: https://ieeexplore-ieee-
org.proxy.library.cmu.edu/stamp/stamp.jsp?tp=&arnumber=8671755

[8] Minimum Snap Trajectory Generation and Control for Quadrotors:
http://www-personal.acfr.usyd.edu.au/spns/cdm/papers/Mellinger.pdf

[9] FlightGoggles: Photorealistic Sensor Simulation for Perception-
driven Robotics using Photogrammetry and Virtual Reality:
https://arxiv.org/abs/1905.11377

[10] A Reduction of Imitation Learning and Structured Prediction to No-
Regret Online Learning: https://www.ri.cmu.

[11] Differential Flatness of Mechanical Control Systems: A Catalog
of Prototype Systems https://www.ri.cmu.edu/pub files/2011/4/Ross-
AISTATS11-NoRegret.pdf

[12] Differential Flatness of Quadrotor Dynamics Subject to Ro-
tor Drag for Accurate Tracking of High-Speed Trajectories
http://rpg.ifi.uzh.ch/docs/RAL18˙Faessler.pdf

[13] Minimum snap trajectory planning in MATLAB
https://github.com/symao/minimum snap trajectory generation


	Introduction
	Problem Statement
	Related Work
	Methodology
	Optimal Spline Generation
	Formulating the QP
	Waypoint constraints
	Continuity Constraints
	Direction constraints
	Creating trajectories for drone races
	Determining Segment durations

	Controller

	Experiments
	Conclusion
	References

